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We present a detailed study of the equilibriumlike invaded cluster algorithm, recently proposed as an
extension of the invaded cluster algorithm, designed to drive the system to criticality while still preserving the
equilibrium ensemble. We perform extensive simulations on two special cases of the Potts model and examine
the precision of critical exponents by including the leading corrections. We show that both thermal and
magnetic critical exponents can be obtained with high accuracy compared to the best available results. The
choice of the auxiliary parameters of the algorithm is discussed in context of dynamical properties. We also
discuss the relation to the Li-Sokal bound for the dynamical exponent z.
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I. INTRODUCTION

As an important tool in the study of phase transitions
Monte Carlo �MC� simulations passed through significant
advances in the last decades and number of algorithms and
improvements were proposed in various directions such as
cluster algorithms by Swendsen and Wang �1� or Wolff �2�,
multicanonical algorithm �3�, and Wang-Landau algorithm
�4�. An interesting direction undertaken by Machta et al. �5�
was to construct an algorithm which would, in a self orga-
nized way, drive the system to critical temperature without
prior knowledge of it. It was applied to various classical
models from discrete to continuous ones including some
more complicated effects such as frustration �6�, quasiperi-
odic ordering �7�, or tricritical points �8�. Their method,
based on the invasion percolation �9� and the cluster algo-
rithm, appeared to converge much faster than in the
Swendsen-Wang �SW� algorithm, with a dynamical exponent
z close to zero. In the same time it opened a number of issues
�10,11� related to the fact that the underlying nonequilibrium
procedure does not generate an equilibrium ensemble and
consequently is not able to reproduce correct critical expo-
nents when a finite-size scaling is applied. There were also
some other attempts to design a cluster algorithm that would
self-regulate to criticality �12,13�.

Recently, we proposed a modification of the invaded clus-
ter �IC� algorithm �14� aimed to reestablish the equilibrium
in the self-regulating procedure of the IC algorithm. The
principal idea is to impose a simple constraint on the tem-
perature uncertainty characteristic to the IC algorithm, reduc-
ing it to the limits compatible with the equilibrium distribu-
tion. As shown in our preliminary work �14�, when this
single constraint is applied to the IC algorithm, the correct
scaling properties of thermodynamic observables are recov-
ered, while the algorithm still retains the property of self-
driving to criticality.

The aim of the present paper is twofold. First, it offers a
more intensive and comprehensive numerical calculations,
including the leading convergence exponent, in order to ex-

amine the precision of the results for critical exponents and
temperature that the equilibriumlike invaded cluster �EIC�
algorithm can provide. Second is to extend the study to the
dynamical properties of the algorithm, in particular to the
autocorrelation functions, which indicate deviations from the
equilibrium distribution providing the criteria for the choice
of auxiliary parameters of the method, which would not pro-
duce systematic errors.

The paper is organized as follows. In Sec. II we introduce
the model and notations and describe in detail the principles
of EIC algorithm. In Sec. III is presented the analysis of
critical exponents and temperature including the leading cor-
rection to scaling. We also add a brief comment on the ap-
plication of this algorithm to the first-order phase transition.
In Sec. IV we study the dynamical properties of EIC algo-
rithm through the autocorrelations of energy and order pa-
rameter with a special emphasis on the impact of choice of
the two auxiliary parameters. Section V contains the conclu-
sion.

II. ALGORITHM

We consider the Potts model �15,16� defined by the
Hamiltonian

H = − J�
�i,j�

���i,�j
− 1� , �1�

where �i denotes the q-state Potts variable at the lattice site i
and the summation runs over the nearest neighbors. As
shown by Fortuin and Kasteleyn �FK� �17�, the partition
function of the model �1� can be written as

Z = �
��i�

e−�H � �
��i�

	
�i,j�

��1 − p� + p��i�j
� , �2�

where

p = 1 − e−�J, �3�

and � is the Boltzmann factor. By expanding the binomial
product into sum over graphs and integrating over the spin
degrees of freedom it reduces to the random-cluster �RC�
model
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Z = �
���

pb����1 − p�B−b���qc���, �4�

which can be understood as a generalized bond percolation,
where p is the bond probability. The summation in Eq. �4� is
taken over the set � of all the graphs on the lattice, each
graph � representing one possible bond configuration. B is
the number of the lattice edges, b��� denotes the number of
bonds, and c��� is the number of connected components �FK
clusters� in the graph �.

FK expansion of the Potts model partition function is also
used as a basis for construction of cluster algorithms for
numerical simulations �1,18�. To this purpose the right-hand
side of the Eq. �2� can be written in alternative way by in-
troducing degrees of freedom ni,j =0,1, representing the ab-
sence or presence of bonds in the expansion of the binary
product in Eq. �2�. In such a way the Boltzmann weight in
Eq. �2� is decomposed into two joint distributions: over spin
�
��� or bond �
n�� configurations

w�
��,
n�� =
1

Z
	
�i,j�

��1 − p��ni,j,0
+ p�ni,j,1

��i,�j
� . �5�

As it may be seen from Eqs. �2� and �5�, for a given bond
configuration, only the spin configurations where the spins
belonging to the same cluster are in the same state give a
nonzero contribution to the partition function, while entire
clusters may be flipped without an energy cost. On the other
hand, for a given spin configuration �
��� the Boltzmann
weight reduces to a binomial distribution of bond occupancy

w�
��� =
1

Z
�1 − p�B−nss�

b
�nss

b
pb�1 − p�nss−b, �6�

where nss denotes the total number of satisfied edges �sur-
rounded by spins in the same state�. The standard cluster
algorithms such as SW �1� consist in alternate updates of
bonds and spins. In the first part of the MC step, taken a
given spin configuration 
��, the FK clusters are formed by
putting bonds, with probability p, between neighbors in the
same state. In the second part, each cluster is flipped at ran-
dom producing a new configuration of spins. The bonds are
then erased and one proceeds to the next MC step. In such a
way the equilibrium ensemble is generated.

The IC algorithm �5� consists of the same two steps, but
the bond update is altered in order to accomplish the self
driving to criticality. Given the configuration of spins, the
bonds are added with the probability 1, but only until the
percolation is achieved. This is interpreted as a signature of a
finite-size critical point. As soon as the percolation is reached
the FK clusters are randomized. The fraction of satisfied
edges that has been populated

p
�� =
b�
���

nss�
���
, �7�

is recorded after each MC step. b�
��� denotes the number of
added bonds and nss�
��� the number of neighboring pairs in
a same state for a given spin configuration 
��. The average
over simulations p̄
�� is identified with the quantity p defined
in Eq. �3�, yielding a critical temperature estimate. It is easy

to understand why such a procedure is self-driving to criti-
cality. Namely, if the given configuration of spins is typical
for a temperature much higher than Tc �with random and
poorly correlated spins� almost all the edges with satisfied
neighbors will need to be populated before the percolation
has been achieved. The nss in the next iteration can only be
larger—the system will be driven toward configurations with
lower energies, corresponding to lower temperatures. On the
other hand, when the configuration is typical of lower tem-
peratures, with nss considerably larger than the one in criti-
cality, small amount of added bonds will suffice to achieve
percolation, so that, after randomization of clusters nss will
be diminished driving the system to higher temperature con-
figurations. In the same time one can notice here a drawback
of this self-driving procedure. In both cases, the described
configurations that have been retained for statistics result
from the tails of a binomial distribution �6�. Problem is that
such configurations are typical during entire IC simulation.
Namely, in spite of the fact that the system is driven to criti-
cality, the described oscillations remain significant through-
out the simulations, so that it generates distribution of p
��
that is much wider than it would result from the binomial
distribution of Eq. �6�. Consequently, the resulting ensemble
is not a canonical one and not in equilibrium, as observed
already in �10�.

Our EIC algorithm approach follows the same IC proce-
dure but restrains the excessive fluctuations in p
�� in order to
regain the equilibrium fluctuations. The main idea is to con-
strain the width of distribution of p
�� obtained from the
simulations by the relation �7� to the width which is compat-
ible with the distribution of b
�� in Eq. �6� and which has the
same scaling in L. The width of the binomial distribution in
Eq. �6� gives var�p
�����p�1− p�nss

−d/2. Since nss corresponds
to the energy of a given configuration and is �Ld, we impose
the constraint on p
��, which allows it to vary only within
limited range of the width v�L−d/2.

To include this constraint into algorithm, we modified the
stopping rule by introducing two auxiliary parameters to the
IC algorithm, ṽ and Na. Let us review this procedure briefly
and discuss the role of these free parameters.

The MC iterations are grouped in intervals of Na MC
steps. In every interval i of Na steps the bonds are placed on
the lattice between satisfied neighbors with the intention to
construct a percolating cluster. However, the system is not
left to percolate with just any value of p
�� as in the IC
algorithm. Any accepted configuration is required to lie in-
side the interval: p̄i−1−v	 p
��	 p̄i−1+v, where p̄i denotes
the average of p
�� over the i-th block of Na steps. Here v is
the free parameter set to be

v = ṽL−d/2, �8�

and ṽ is a constant whose choice will be discussed later. If
the system percolates before the lower bound of p
�� is
reached, the bonds are still added until the lower bound is
attained. If the upper bound of p
�� is reached before the
percolation is attained, the process is stopped without requir-
ing the system to percolate. After every block of Na MC
steps, the new average, p̄i, is calculated to be used as a ref-
erence value in the next Na steps. Obviously, in this way the
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information on the value of p̄i−1 in the preceding Na MC
steps is propagated to the consecutive interval i and will have
an effect on the autocorrelation functions �to be discussed in
the Sec. IV�.

The starting value p̄0 can be obtained by the uncon-
strained IC algorithm. One can also define a faster equilibra-
tion of the IC algorithm by gradually reducing the value of
parameter ṽ in Eq. �8� during some initial set of intervals of
Na steps. These first few blocks of Na steps are discarded
from statistics and the configurations are recorded after the
steady state was reached.

Distribution of p
�� resulting from the above procedure
has the required width proportional to v= ṽL−d/2 under the
assumption that Na is large enough so that the fluctuations of
p
�� within the interval are dominant over the fluctuations of
p̄i between the intervals. In this case the fluctuations of the
mean value p̄i reduce to the actual temperature fluctuations,
producing the width of order L−1/
	L−d/2 if the heat capacity
exponent ��0 or of order L−d/2 if �	0. If Na would be
small enough for the fluctuations of p̄i between the intervals
to take over, a crossover to the IC regime would be seen.
Later we will demonstrate that there exists a clear indication
when this occurs.

In Fig. 1 we give an illustration that the canonical form of
energy distribution is recovered within the EIC algorithm. As
noted by Machta et al. �5�, Ldvar�e� for two-dimensional
�2D� Ising obtained by the IC algorithm scales approxi-
mately linearly with the system size L, while it should scale
as ln L if the ensemble was canonical. To examine the same
point within the EIC algorithm, we present in Fig. 1 an over-
lap fit of the energy distributions resulting from EIC algo-
rithm and compare it with the distributions obtained by IC
algorithm with equal statistics, for several lattice sizes in the
case of q=3 Potts in 2D. The distributions are rescaled with
the exact value of the exponent describing the width of the

energy distribution in the equilibrium ensemble, X= d
2 − �

2

=0.8. It is immediately seen that the results for different L,
obtained by EIC, collapse very well, while the ones obtained
by IC do not. To quantify that fact, we show in the inset of
Fig. 1 the ln-ln plots of Ldvar�e� vs. L, the slopes of which in
the canonical ensemble represent the exponent � /
 �exactly
equal to 0.4 in this case�. For the lattice sizes considered we
obtain �0.38 and �1.26 for EIC and IC cases, respectively
�in terms of the width scaling XEIC�0.81 and XIC�0.37�.
This indicates that the ensemble sampled by the EIC algo-
rithm is indeed canonical, contrary to the one produced by
the standard IC algorithm, which appears to be much wider
and scales with different exponent, characterizing the algo-
rithm itself �10�. As it shall be seen in the next section, the
EIC algorithm can be used to obtain very accurate values for
critical exponents, not only the magnetic one related to criti-
cality, but also the thermal critical exponent related to the
approach to criticality and implying the validity of
fluctuation-dissipation theorem.

III. CRITICAL BEHAVIOR

Derivation of critical exponents and temperature by EIC
algorithm was already illustrated by applying it to several
cases of the Potts model in our preliminary study. In present
work, we selected only two cases both exhibiting second-
order phase transition, one in two and one in three dimen-
sions: case q=3 in 2D and Ising case �q=2� in three dimen-
sions �3D�. We conducted extensive numerical simulations
increased by an order of magnitude with respect to the pre-
liminary study �14�. This allowed us to calculate the leading
power-law corrections as well and analyze the precision of
the results with particular attention to possible systematic
errors due to the choice of the auxiliary parameters. Unlike
our previous study, we avoided to use any data exactly
known in advance and applied consistently multi parameter
fits, which give critical temperature and critical exponents
simultaneously whenever needed.

The simulations were performed on lattices with periodic
boundary conditions and sizes up to L=96 and 1 024 in the
3D and 2D cases, respectively. The statistics varied from
15106 iterations for smaller to 7106 iterations for the
largest lattice sizes in the 3D case and from 15106 to
5106 in the 2D case. The auxiliary parameters were set to
ṽ=1 /10 and Na=100 in both cases. The percolation was es-
tablished by the topological rule, i.e., by the condition that
the infinite cluster wraps around the lattice. The time neces-
sary to reach the equilibrium state never exceeded the first
3 000 MC steps with the above choice of auxiliary param-
eters Na and v.

The running time per MC step was approximately the
same as for the original IC algorithm. For illustration, a run
of 105 MC steps for the 2D Ising model on L=64 lattice
requires approximately 500s on the AMD Opteron 240 pro-
cessor �1.4GHz�.

A. Magnetic critical exponent yh

The magnetic critical exponent was evaluated indepen-
dently from three different quantities calculated at criticality,
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FIG. 1. �Color online� Overlap fits of energy distributions w�e�
for q=3 Potts in 2D rescaled with the exact exponent X=0.8. In the
inset are shown ln-ln plots of Ldvar�e� vs L. The statistic is 106

MCS for both EIC and IC cases, and the parameters of the EIC
algorithm were chosen to be Na=100 and ṽ= 1
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the average mass of the largest cluster, the order parameter
and the susceptibility.

The average mass of the largest cluster s̄max is defined as
the number of spins in the largest cluster averaged over all
the configurations. Its scaling yields the critical exponent yh
directly

s̄max�p=pc
= asL

yh + bsL
yh+�1 + ¯ �9�

A four-parameter fit of our finite-size results �see Fig. 2�
to the form �9� produced rather accurate estimate of the ex-
ponent yh and showed that the leading correction is of a
power-law form. Results for the exponents are: yh
=2.4815�5� with �1=−2.2�1� and yh=1.8661�7� with �1
=−1.1�1� for 3D Ising and 2D q=3 Potts model, respec-
tively.

The order parameter m scales at Tc according to

m�p=pc
= amL−�/
 + bmL−�/
+�2 + ¯ , �10�

where � /
 is related to yh by � /
=d−yh. It was calculated
by using the standard definition of the order parameter for
the Potts model

m = m̄1, m1 =
q

�q − 1�Ldmax���
i
���i,�

−
1

q
� . �11�

which consists in taking the most populated among the q
Potts states in each configuration. By a four-parameter fit to
the form �10� we found the exponents � /
=0.5180�2� with
�2=−1.9�1� and � /
=0.1345�5� with �2=−2.2�1� for 3D
Ising and q=3 case in 2D, respectively.

The fluctuations of the magnetization in equilibrium are
related to the susceptibility by the relation

� =
Ld

kBT
�m2 − m̄2� , �12�

which assumes the validity of the fluctuation-dissipation
theorem, not fulfilled for the standard IC algorithm. For a

finite system, at the quasicritical point TcL, the susceptibility
exhibits maximum, which scales with a power law

��p=pcL
� L�/
, �13�

and is related to the magnetic exponent by � /
=2yh−d. The
log-log fit of the results �see Fig. 3� gives � /
=1.98�1� and
� /
=1.74�1� for 3D Ising and q=3 case in 2D, respectively.
We find the values of � /
 less accurate than the estimates for
yh or � /
. The reason may be attributed to the fact that, for
a finite system, the critical point identified by the percolation
through a specific choice of the stopping rule, should not
necessarily coincide with the quasicritical temperature de-
fined by the maximum of the susceptibility.

Another quantity of interest, related to the magnetization
is the Binder fourth-order cumulant �19�, defined as

U4 = 1 −
m4

3m22 . �14�

One of its main benefits within numerical calculations is to
provide a good estimation of the critical temperature, which
in the present case, where the algorithm drives itself to the
critical point is not the main issue. At criticality it may be
related to the one of the universal amplitude ratios and we
found interesting to examine this quantity and its size con-
vergence within the present algorithm.

It is important to notice, that in the present approach, U4
is calculated at the finite-size critical point defined by the
topological rule, hence �
L= ã, where ã is some non univer-
sal constant factor. The L dependence of Binder cumulant at
this finite-size critical point is

U4�L,t,u� = U4��
L� + b1uLyi + ¯ �15�

Consequently, the constant term of the Binder cumulant in
the thermodynamic limit depends on the way of approaching
to the critical point. Other authors �20� considered instead
the universal value U4�0�. In Fig. 4 the results are shown for
3D Ising and 2D q=3 cases. The values can be fitted quite
accurately to a three-parameter power-law form: U4�L�
=U4�ã�+bU,1L�3. The constants U4�ã� are found to be
U4�ã�=0.412�4� and U4�ã�=0.523�2� for 3D Ising and q=3
Potts in 2D, respectively. The respective convergence expo-
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nent �3 is determined to be �3=−0.75�3� and �3=−0.91�4�.
A value U4�L→���0.40 which is similar to the value ob-
tained in the present work for 3D Ising case can be found in
Ref. �21� which was obtained by the extrapolation of the
finite-size values U4�L� taken at the point where

�U4�L�
�J attains

its maximum.

B. Thermal critical exponent yt and critical temperature

Two quantities related to the thermal critical exponent
y�=1 /
 were examined. The first one is pc�L�, related to the
quasicritical temperature, with the leading size dependence

pc�L� = pc�L → �� + apL−1/
 + ¯ �16�

It is obtained from the average over p
�� defined in the Eq.
�7�. Data for pc�L� with a three-parameter fit are illustrated in
Fig. 5. The fit appears to be more suitable for finding the
pc�L→��, giving the critical point with the precision up to
the sixth digit, yielding pc�L→��=0.358097�1� and pc�L
→��=0.633975�1� for 3D Ising and q=3 case in 2D, re-
spectively. An estimate of the exponent yt by the same pro-
cedure appears, however, to be by an order of magnitude less
precise than by the logarithmic derivative of m.

To derive the critical exponent 
 we consider the logarith-
mic derivative of magnetization �see Fig. 6� and use

� ln m

��
= Ldem − ēm̄

m̄
� aemL1/
 + bemLyt+�4 + ¯ �17�

The equality in Eq. �17� implies that the equilibrium en-
semble is well reproduced by our algorithm, which we ex-
pect to hold. Indeed, the obtained values for the exponent 

are in excellent agreement with known exact or best approxi-
mate results. The four-parameter fit to the form of the right-
hand side in Eq. �17� gave y�=1.586�5�, �4=−2.0�2� and
y�=1.201�8�, �4=−1.0�3� for 3D Ising and 2D, q=3 case,
respectively.

C. Summary of critical exponents and corrections to scaling

Critical exponents, and their leading corrections calcu-
lated in preceding two sections are summarized in Tables I
and II. It can be concluded that, with only a fraction of nu-
merical effort needed for the SW algorithm, the critical be-
havior can be obtained very accurately and in excellent
agreement with the best known or exact results. The location
of the critical point can be obtained with rather high degree
of accuracy as well.

For better reliability of our results we included in our
analysis the corrections to scaling. We observe that they dif-
fer substantially from the expected scaling corrections due to
the irrelevant scaling fields and nonlinearities of scaling
fields near criticality and should be attributed to the method
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itself. The leading irrelevant exponent for 2D q=3 is exactly
known to be yi=− 4

5 . For the 3D Ising case it is estimated to
be yi=−0.84�4� �22�. Our results show the scaling correc-
tions that decay much faster than yi in most cases, giving the
exponents �i close to −2 or −1 in the 3D and 2D cases,
respectively. The exception is the convergence of the Binder
cumulant ��3 in Table II� with the correction exponent that
can be compared to the value of leading irrelevant scaling
field yi found by other authors.

D. First-order phase transition

The example for our study being the Potts model gives
and opportunity to examine the applicability of our algorithm
to the first-order phase transitions. We make thus a small
digression here, to show, without going into any details, that
the same procedure, when applied to a first-order phase tran-
sition gives a clear indication on its character.

We first remind that for studies of the first-order transi-
tions by the IC algorithm the stopping rules based on the
cluster mass are more appropriate �5� and can be readily
extended to EIC. Our intention here is to point out how the
first-order phase transition manifests when the topological
stopping rule is used. As the first-order transition is charac-
terized by a finite hysteresis width, the construction of per-
colating clusters becomes possible for all the values of p
��
within the hysteresis and thus the values of p
�� sweep trough
the entire width of the hysteresis. This results with the pla-
teau in the distribution w�p
��� whose width is not propor-
tional to L−d/2 but tends to some constant value correspond-
ing to the hysteresis width in the thermodynamic limit �see
Fig. 7�. We illustrate this on the two examples of the first-

order transition in the 3D Potts model. For q=5, the first-
order transition is very strong and the figure clearly reveals
the width of the hysteresis. For q=3 which is characterized
by a very weak first-order transition, larger lattices are
needed to see the hysteresis. However, already for modest
sizes, an inspection of the Fig. 7 suggests that the width of
the distribution will not vanish with some power law in L,
since its shape starts to qualitatively resemble the one for 3D,
q=5.

IV. DYNAMICAL PROPERTIES OF EIC ALGORITHM

The dynamics introduced by the EIC algorithm was stud-
ied by considering the autocorrelation function defined for an
arbitrary observable O by

�O�t� =
O�t�O�0� − Ō2

O2 − Ō2
. �18�

The average is taken over the ensemble generated in the
single run, after the thermalization, i.e.,

O�t��O�0� =
1

tmax − t�
�
t=1

tmax−t�

O�t�O�t + t�� , �19�

On =
1

tmax
�
t=1

tmax

O�t�n, �20�

where t, and t� denote time in discrete integer units corre-
sponding to one MC step and counting starts after equilibra-
tion. tmax denotes the number of counted steps in the single
run. The Eq. �19� implies certain equilibrium properties of
macroscopic variables such as the translational invariance in
time and well defined temperature �or p�. The self-regulating
procedure of EIC contains deviations from these properties,

TABLE I. Leading critical parameters obtained by EIC �from
L=64 to 1024 for q=3 2D and from L=16 to 96 for 3D� compared
to best known or exact results.

q=2, 3D q=3, 2D

EIC Best knowna EIC Exact

pc�L→�� 0.358097�1� 0.358098�3� 0.633975�1� 0.6339745…
y� 1.586�5� 1.587�6� 1.201�8� 6

5

yh 2.4815�5� 2.4818�6� 1.8661�7� 1.86̇

� /
 0.5180�4� 0.5182�6� 0.134�1� 0.13̇

� /
 1.98�1� 1.964�1� 1.74�1� 1.73̇

aBest known values from �21,22�.

TABLE II. Corrections to scaling obtained by EIC algorithm
�for reference see in the text�

q=2, 3D q=3, 2D

�1 −2.2�1� −1.1�1�
�2 −1.9�1� −2.2�1�
�3 −0.75�3� −0.91�4�
�4 −2.0�2� −1.0�3�

0.49 0.495 0.5 0.505 0.51

20

40

60

80

100
L=16, q=5, 3D
L=48, q=5, 3D

0.4225 0.423 0.4235 0.424 0.4245
p{σ}

300

600

900

w
(p

{σ
})

L=48, q=3, 3D
L=80, q=3, 3D

FIG. 7. �Color online� Distributions w�p
��� of p
�� produced by
EIC algorithm for the 3D Potts model in the case of strong �q=5�
and weak �q=3� first-order phase transition.
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but as these occur within bounds which we expect to pre-
serve the equilibrium ensemble we find justified to attempt a
study of this process as the equilibrium one. We skip here the
analysis of the nonequilibrium details of the process, which
would require a different averaging procedure. Instead, we
apply the Eq. �19� and just comment the differences found in
comparison to the form of autocorrelation functions obtained
in standard MC approaches.

In standard MC approaches one may usually distinguish
three regimes of behavior of the autocorrelation functions
�23�. For short times they behave as a sum of exponential
decays. For longer times they adopt a single exponential de-
cay of the form �O�t��e−t/� with a correlation time �, while
for very large times the correlations vanish and the statistical
errors take over.

In Fig. 8 are displayed the autocorrelations in the EIC
algorithm compared to those in the SW and IC algorithms on
the example of the magnetic autocorrelation function in the
case 2D q=3. While the IC autocorrelations fall extremely
fast, the EIC correlations display similar decay as in the SW
algorithm with the difference that they acquire a negative
sign at times of the order of Na. The slower decay of �O�tj�
reflects the fact that IC dynamics has been slowed down by
the requirement that the values of p
�� remain during Na MC
steps in the narrow interval of 2v around the average of p̄i−1.
The fact that ��tj� acquires negative values can be related to
the abrupt switch of the mean value p̄i after every Na steps as
a part of the self-regulating procedure. EIC algorithm has a
tendency to “overshoot” the critical temperature and find it-
self on the other side of the critical point in the following

step. While Ō represents the average of the magnetization
taken over the entire run, the average of magnetization over

each single Na block is different �larger of smaller than Ō�
and varies according to p̄i. This explains why in the expres-

sion for the correlation function, �O�t�− Ō� and �O�t+ t��

− Ō� can in average be of the opposite sign, when t and t
+ t� belong to the neighboring blocks of Na steps and produce
anticorrelations.

The semilog plot displayed in Fig. 9 shows that the auto-
correlation functions indeed match well the assumed expo-
nential form. This leads us to the question of the correlation
time and the corresponding dynamic exponent z, which
should satisfy the scaling relation

� � Lz. �21�

Derivation of the correlation time is performed usually in
two equivalent ways: by fitting the exponential decay �expo-
nential correlation time� or by taking the integral �
=�0

��O�t�dt �integrated correlation time�.
The calculation of the exponential correlation time applies

to the present problem in a straightforward way, as already
illustrated in Fig. 9. The correlation times derived from the
slopes of such semilog plots and the corresponding dynamic
exponents are presented in Table III, denoted by �O,a and
zO,a, respectively. The calculation of an integrated correlation
time is obviously not applicable in the present case since
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FIG. 8. �Color online� Magnetic autocorrelation function �m�t�
for EIC, SW, and IC algorithms for 2D, q=3. On the inset of the
figure are shown the integrated autocorrelation functions for the
same cases.
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TABLE III. Dynamical exponents of EIC algorithm �with Na

=100, v= 1
10L−d/2�

q=2, 3D q=3, 2D

EIC: zm,a 0.41�5� 0.38�2�
EIC: zm,b 0.38�3� 0.29�2�
EIC: ze,a 0.42�3� 0.42�2�
EIC: ze,b 0.47�3� 0.36�2�
SW z b 0.46�3� 0.49�1�
� /
 0.172�1�a 2/5

aBest known values �22�.
bResults cited in �25,26�.
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�O�t� is not positive in the entire domain of integration. In
the inset of Fig. 8 we sketch the partial sums IO�t�
=�t�=0

t �O�t�� for the three algorithms. While in the SW case
the sum IO�t� rapidly saturates, for the EIC algorithm these
sums tend to vanish at infinity and exhibit maxima at the
point where the �O�t� turns negative. We thus consider in-
stead the maxima of these partial sums. Under certain ap-
proximation, if the correlation time is much smaller than the
time interval Na /2, they may be understood as characteristic
times �O,b. Namely, if ��Na /2, the exponential decay of
autocorrelation functions dies out before the regime of anti-
correlations sets in. The maxima of partial sums will then
approximate well the �integrated� correlation time, while
successfully leaving out of consideration the regime of anti-
correlations. Our analysis shows that these maxima �see Fig.
10� exhibit indeed a power-law scaling with an exponent
very close to zO,a. However, if the condition ��Na /2 is not
fulfilled, such an approximation is not justified and we shall
discuss the consequences later on. Both �O,a�L� and �O,b�L�
were calculated for the autocorrelations of energy and mag-
netization and are presented in log-log plots versus the sys-
tem size L in Fig. 11, while the corresponding scaling expo-
nents can be compared in Table III.

Dynamical exponents derived from the energy and from
the magnetization coincide up to the error margins. We also
observe a good matching between exponents zO,a and zO,b in
the 3D case, while some discrepancy exists between these
exponents in 2D. The reason for that can be related to the
choice of the auxiliary parameters. While the correlation
times are several times larger in the 2D case, all the calcula-
tions presented in Table III were performed with the same
Na=100. As it may be observed in Fig. 12, for the 3D Ising
case this choice is large enough to fulfill the condition �
�Na /2 and allow the autocorrelations to become negligible
before the effect of anticorrelations appears. In 2D case this
condition is clearly not fulfilled, especially for larger lattice
sizes and the values �m,b and the corresponding exponent

cannot be related to the correlation time. It is interesting to
discuss these results in context of the argument by Li and
Sokal �24�, which sets the lower bound on the dynamical
exponent z in cluster algorithms. Relating the minimal auto-
correlation times to the heat capacity of the system, they
argue that the lower bound for the dynamical exponent is
given by

z � �/
 . �22�

The results for z �EIC summarized in Table III are compared to
the most recent values of z �SW �25,26�, and to the exponent
ratio � /
. In both considered cases the dynamical exponent
appears to be comparable, but lower than the value for the
SW algorithm. We also observe that the values �O,a give

��

������
�
�
�����
�
�
�
�
��������
�
�
�
�
������������������

�
�
�
�
�
�
��
��
�
�
�
�
������

��

��
�
�
�
���
���
���
�
�
������
��
��
�
�
�������
��
��
�
�
������������
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��

�����
�
�
��
�
�
���
�
�
�����
�
�
�����
�
�
�������
�
�
�
�
����������������

�
�
�
�
�
�
�
�
�
�

��

�
�����
�
�
��
��
��
��
��
�
�
����
�
�
�����
��
��
��������
��
��
�
�
�����������������

��

�
�����
��
��
��
�
�
��
�
�
���
��
��
���
��
��
��������
��
��
����������������

�
�
�
�
�
�

��

�
�
���
�
�
�
�
�
�
��
���
�
�
���
���
��
��
�����
�
�
�
�
������
��
��
�
�
�
�
�������������

�
�
�
�
�
�

0 200 400 600 800 1000
ti

0

1

2

3

4

5

6

7
Σ iΓ m

(t
i)

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

L=16��
L=36

��L=48��
L=64

��L=80��
L=96

��

FIG. 10. �Color online� Integrals of magnetization autocorrela-
tion functions Im�tk�=�tk

tj=0�m�tj� of 3D Ising for several lattice
sizes.

64 128 256 512 1024
L

8

16

32

64τ O
,i

τm,b
τm,a
τe,b
τe,a

16 32 64 128

4

8

16
q=2, 3D

q=3, 2D

FIG. 11. �Color online� Characteristic times of energy and mag-
netization autocorrelation functions for the systems considered, de-
termined by two approaches described in the text.

0 50 100 150 200 250
ti

-0.1

-0.05

0

0.05

Γ m
(t

i)

L=64
L=128
L=256
L=512
L=768
L=1024

�
��
�
�
�
�
��
��
�
�
��
�
��������������������������������

��
���
����������������������������������

��
��

�
�
���
�
�
����������������������������������

��
��

�
���
�
�
����������������������������������

�
���
�
�
�
�
������

�
�
�
�
�
�
�
�
�
�
������
��
�
�
�
�
��
��
�
�����������

�
�
���
�
�
������

�
�
�
�
��
��
�
�
�
�
��
��
�
�
�������
��
��
�
��
���
�
�
��
�����

0 50 100 150 200 250

-0.02

0

0.02

0.04

0.06
L=16

�
�
�
�

L=36�� L=48

�
�
�
�

L=64�� L=80

�
�
�
�

L=96��

q=2, 3D

q=3, 2D

FIG. 12. �Color online� Behavior of the autocorrelation func-
tions of magnetization for ti around Na=100 �indicated by the ver-
tical line� in the two cases considered and for various lattice sizes.

I. BALOG AND K. UZELAC PHYSICAL REVIEW E 81, 041111 �2010�

041111-8



results for the dynamical exponent conform to the Li-Sokal
bound up to the statistical error. In the 2D case, where dis-
crepancy between the exponents zO,a and zO,b was observed,
the dynamic exponent is just about crossing the Li-Sokal
limit, which can be understood as a sign that the system is
close to leaving the equilibrium and taking the crossover to
IC behavior. It has to be mentioned however, that as long as
the width of temperature fluctuations is properly constrained
this only seems to increase the noise in our results. No sys-
tematic errors were observed in the 2D results for Na=100,
while the resulting ensemble retains the correct scaling,
proper to the canonical ensemble as illustrated in Fig. 1.

In view of the above discussion we can drive some gen-
eral conclusions about the choice of the auxiliary parameters
Na and v, and their impact on the results.

A. Parameter Na

It was briefly mentioned in the end of Sec. II that the
number Na must be large enough to prevent the IC dynamics
from taking over the behavior of p
�� fluctuations. This is the
only restriction to the parameter Na. As discussed earlier in
this section, this starts to happen when Na is comparable to
the value of the autocorrelation time of the system in consid-
eration. Thus Na should be chosen to be at least more than
two times larger than the autocorrelation time for any lattice
size considered for a given system. When this is not fulfilled,
there is a clear indication of the crossover to the IC dynamics
in the behavior of the autocorrelation functions, as observed
already in the 2D case with Na=100. When Na is reduced
even further, the autocorrelation function changes the sign
more than once, meaning that more than two values of p̄i are
correlated, which clearly indicates the domination of IC dy-
namics over the EIC dynamics �Fig. 13�. Indeed, in these
cases one finds that �var�p
����L−b where b	

d
2 and the ini-

tial requirement for fluctuations of p
�� is not fulfilled.

B. Parameter v

The effects of varying the parameter v can also be ob-
served in the behavior of autocorrelation functions. We shall

illustrate this on two examples. In the first example v was
augmented by keeping the power-law decay of the form
L−d/2, but increasing the constant of proportionality ṽ beyond
the value compatible with the width following from the bi-
nomial distribution of Eq. �6�. In the second one, the param-
eter v lies inside the regime imposed by the EIC constraint,
but decreases with size faster than L−d/2.

The examples are taken in the 2D, q=3 case for the lattice
sizes from L=64 to 640, and using statistics of 106 MC steps,
while Na was increased to Na=250 in order to avoid its con-
tribution to nonequilibrium effects. For the case 2D, q=3,
the width of the distribution of p
�� corresponding to the

binomial distribution in Eq. �6� would be �
�pC�1−pC�

2 nss
−d/2

�0.19L−1. We compare the results for the three different
values of v: �a� v= 1

3L−1; �b� v= 1
10L−1; and �c� v=1L−1.5. The

results for the dynamical exponents are shown in the Table
IV.

Let us first comment the reference case �b� corresponding
to the value of v used throughout this paper. When compar-
ing the results with those in Table IV, obtained with Na
=100, one may see that by increasing Na the exponent zO,a
approaches closer to the Li-Sokal limit, while the discrep-
ancy between exponents zO,a and zO,b diminishes. This con-
firms the earlier discussion in this Section and the expecta-
tion that an increasing of Na would indeed correct the
deviation from the equilibrium behavior.

In the case �a� the width v has the same power-law decay,
but the constant factor ṽ was taken larger than the value used
in this paper and also larger than the one of the binomial
distribution in Eq. �6�. In spite of the correct power-law de-
pendence, the crossover to the IC regime for lattice sizes
considered here is observed. In autocorrelation functions, the
regime of single exponential decay shrinks drastically and
consequently times �O,a could not be defined. We may still
consider the quantity �O,b, since it still exhibits a power-law
behavior, although it may not be interpreted as a correlation
time. The corresponding exponent zO,b is much smaller than
the Li-Sokal limit for the dynamical exponent of the equilib-
rium cluster algorithms.

In contrast to this, in the example �c� with v=1L−1.5 the
exponential regime of the autocorrelation functions is longer
then for v= 1

10L−1 and consequently allows a more accurate
calculation of both �O,a and �O,b, giving the same dynamical
exponent up to the error margins. It is interesting to notice
that by reducing the width parameter v, the dynamic expo-
nent z has increased. This provides a tool to vary the dynami-
cal exponent continuously, by varying the exponent of
power-law decay in v.
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FIG. 13. �Color online� Autocorrelation functions of magnetiza-
tion in the case 2D, q=3 for different values of Na.

TABLE IV. Dynamical exponents for the case 2D, q=3 depend-
ing on v �with Na=250�

v= 1
3L−1 v= 1

10L−1 v=1L−1.5

EIC: zm,a 0.39�3� 0.56�2�
EIC: zm,b 0.20�3� 0.34�4� 0.53�2�
EIC: ze,a 0.41�3� 0.52�2�
EIC: ze,b 0.33�4� 0.38�4� 0.54�2�
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V. DISCUSSION AND CONCLUSION

In this paper, we presented more detailed study of recently
proposed EIC algorithm, designed to simultaneously drive
the system to criticality without its prior knowledge and to
provide the correct critical exponents. Extensive numerical
calculations performed on two typical examples of the Potts
model in two and three dimensions confirmed that the
method efficiently produces results for both critical expo-
nents and critical temperature, with considerable accuracy
that attains up to four digits for critical exponents and six
digits in the case of critical temperature. We conclude that
the two auxiliary parameters of the algorithm, Na and v, may
be varied in the wide range without producing systematic
errors, and that their influence on the results when exceeding
this range can be controlled by examining the behavior of the
autocorrelation functions. We have also estimated the dy-
namic exponent of the EIC algorithm, and shown that it can
be tuned by varying the auxiliary parameters. It is found to
be larger than the one of the standard IC algorithm and gen-
erally smaller than the exponent of the SW algorithm. We
also notice that, when the dynamical exponent is lowered
and reaches beyond the Li-Sokal limit, the crossover to the
nonequilibrium IC algorithm can be observed.

We observe that both in the SW method and in the present
EIC calculations, the dynamical exponent does not change
significantly with dimensionality and stays in the range be-
tween 0.4 and 0.5 in both cases, while the Li-Sokal limit
differs by more than twice between the two cases. The fact

that within the EIC algorithm the dynamical exponent z may
be tuned by changing the auxiliary parameters provides the
means to make further analysis in order to better explain the
reasons, still not well understood �26�, why the equilibrium
cluster algorithms like SW in some cases �e.g., for 3D Ising�,
have much larger dynamical exponent z than required by the
Li-Sokal limit.

Due to its capability of self-tuning to the critical point
there is a wide range of possible applications of the EIC
algorithm to phase transitions, where the critical temperature
is not known in advance. One of the most appealing is cer-
tainly for simulations of phase transitions in presence of
quenched disorder, where it provides the means to calculate
critical properties at finite-size critical temperature for each
individual configuration at feasible time, which helps to
overcome the problems related to the lack of self-averaging
�27�.

The algorithm could also be generalized to other, or more
complex problems such as the first-order phase transition
only briefly mentioned here, or to tricritical points, for which
the extension of the standard IC algorithm was already ap-
plied �8�.
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